Part Number Hot Search : 
2SD1747A ISL41387 LN265RPH MC10E457 0TA17 1029B XB0932P 1N4700D
Product Description
Full Text Search
 

To Download R5212D017A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 R5212D SERIES
Step-down DC/DC Converter with VR and Reset
NO.EA-128-0510
OUTLINE
The R5212D is CMOS-based PWM step-down DC/DC converter combined with a voltage regulator (VR) and a voltage detector (VD), with low supply current. Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, a current limit circuit, a phase compensation circuit, a resistor net for voltage detect circuit, an output driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with some external components, or an inductor, a diode, and capacitors. The oscillator frequency is 1.2MHz, therefore small inductor and capacitor can be used with this IC. Further, this IC equips the under voltage lockout function (UVLO). If the input voltage becomes equal or less than 2.35V (Typ.), the output of DC/DC converter turns off. However, in the A/B version, embedded voltage regulator and detector continue to operate. In the C/D version, LDO output also turns off and only the voltage detector is working. The voltage regulator consists of a voltage reference unit, a resistor net for voltage detect circuit, an error amplifier, an output driver transistor, and so on. The input source voltage of the built-in voltage regulator is VIN pin (A/B version) or VOUT1 pin, the output of DC/DC converter (C/D version). The built-in voltage detector supervises the input voltage and the output is N-channel open drain. Power-on reset delay time is also included and internally set typically at 12ms (A/C version) or 50ms(B/D version).
FEATURES
* * * * * * Range of Input Voltage ............................. 3.0V~5.5V Built-in Soft-start Function (Typ. 1ms) and built-in power-on reset delay (Typ. 12ms or 50ms) Maximum Output Current...........................500mA (DC/DC), 200mA (VR) Accuracy Output Voltage .......................... 2.0% (DC/DC and Voltage Regulator Output) Accuracy of voltage detector .................... 2.5% Output Voltage (VR)(A/B Version) ............ Stepwise Setting with a step of 0.1V in the range of 2.0V to 3.6V (C/D Version) ............ Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.0V * Output Voltage (DC/DC) (A/B Version) ..... Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.6V (C/D Version) ..... Stepwise Setting with a step of 0.1V in the range of 2.5V to 3.6V * Output Voltage (VD).................................. Stepwise Setting with a step of 0.1V in the range of 3.0V to 4.5V * Package .................................................... HSON-6 (t=0.9mm)
APPLICATIONS
* Power source for hand-held communication equipment, CD or DVD drives. * Power source for battery-powered equipment.
1
R5212D
BLOCK DIAGRAMS
R5212xxxA/B
VIN
6
Current Limit
OSC
4 VOUT1 LX 1
Output Control Logic Vref Current Limit Vref Soft Start
U.V.L.O. Delay Circuit Vref
5 VOUT2
3
VDOUT
2
GND
R5212DxxxC/D
VIN
6
Current Limit & Feedback
OSC
4
VOUT1
LX
1
Output Control Logic Soft Start
Vref
Current Limit U.V.L.O. Delay Circuit Vref
5
Vref
VOUT2
3 VDOUT
2
GND
2
R5212D
SELECTION GUIDE
In the R5212D Series, the output voltage combination for the ICs can be selected at the user's re-quest. The selection can be made with designating the part number as shown below;
R5212Dxxxx-TR
ab Code a c
Part Number
Contents Output Voltage Combination Code Number Designation of Optional Function A: VR input pin=VIN pin, VD delay=12ms B: VR input pin=VIN pin, VD delay=50ms C: VR input pin=DC/DC Output, VD delay=Typ. 12ms D: VR input pin=DC/DC Output, VD delay=Typ. 50ms Designation of Taping Type: Refer to Taping specification.
b
c
3
R5212D
PIN CONFIGURATION
HSON-6 Top View
6 5 4
Bottom View
4 5 6
1
2
3
3
2
1
PIN DESCRIPTIONS
Pin No 1 2 3 4 5 6 Symbol LX GND VDOUT VOUT1 VOUT2 VIN Ground Pin Output Pin of Voltage Detector (N-channel open-drain out-put type) DC/DC converter Step-down Output monitoring Pin Output Pin of Voltage Regulator Voltage Supply Pin Pin Description Switching Pin (P-channel open-drain output type)
Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
(GND=0V)
Symbol VIN VLX VOUT1 VOUT2 VDOUT ILX IOUT2 PD Topt Tstg VIN Pin Voltage Lx Pin Voltage VOUT1 Pin Voltage VOUT2 Pin Voltage VDOUT Pin Voltage
Item
Rating 6.5 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 -0.3 ~ 6.5 800 400
1
Unit V V V V V mA mA mW C C
Lx Pin Output Current VOUT2 Pin Output Current Power Dissipation (On Board) Storage Temperature Range Operating Temperature Range
900 -40 ~ +85 -55 ~ +125
1 ) For Power Dissipation please refer to PACKAGE INFORMATION to be described.
4
R5212D
ELECTRICAL CHARACTERISTICS
*
R5212DxxxA
Symbol VIN IDD VUVLO2 VUVLOHYS Item Operating Input Voltage Supply Current UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis VIN=5.0V, VOUT1=0V 2.35 0.05 Conditions Min. 3.0 400 2.50 0.15 Typ. Max. 5.5 800 2.65 0.25
Topt=25C
Unit V A V V
Topt=25C
*
DC/DC Part
Symbol VOUT1 VOUT1/ Topt fosc RLX ILXleak ILXLIM Maxduty tstart Item DC/DC Output Voltage DC/DC Output Voltage Temperature Coefficient Oscillator Frequency Lx on Resistance Lx Leakage Current Lx Current Limit Maximum duty cycle Soft-start Time VIN=5.0V Conditions VIN=5.0V, at no load OPEN LOOP 40C
< =
Min. VOUT1 x0.98
Typ.
Max. VOUT1 x1.02
Unit V ppm /C
Topt
< =
85C 960
100 1200 0.4 0.01 600 100 0.35 1.00 3.00 800 1440 0.8 5.00
VIN=5.0V VIN=5.0V, ILX=100mA VIN=VOUT1=5.5V, VLX=0V VIN=5.0V
kHz A mA % ms
Topt=25C
*
VR Part
Symbol VOUT2 IOUT2 VREG2 VDIF2 ILIM2 VOUT2/ Topt Item VR Output Voltage Maximum Output Current of VR VR Load Regulation Dropout Voltage Short Current Limit VR Output Voltage Temperature Coefficient Conditions VIN=5.0V, IOUT2=10mA VIN=5.0V VIN-VOUT2=0V 1mA < IOUT2 < 80mA = = IOUT2=100mA VOUT2=0V 40C
< =
Min. VOUT2 x0.98 200
Typ.
Max. VOUT2 x1.02 60 0.3
Unit V mA
20 0.2 50
mV V mA ppm /C
Topt=25C
Topt
< =
85C
100
*
VD Part
Symbol -VDET -VDET/ Topt VHYS tPLH IDOUTL Item VD Detector Threshold VD Detector Threshold Temperature Coefficient Hysteresis Range
VD Output Delay Time for Release
Conditions
Min. -VDET x0.975
Typ.
Max. -VDET x1.025
Unit V ppm /C V
40C
< =
Topt
< =
85C
100 -VDET
x0.05
VIN=VDOUT=-VDETx0.9 to 5.0 VIN=2.0V, IOUT=0.1V
3 2
12 7
30 20
ms mA
VDOUT "L" Output Current
5
R5212D
*
R5212DxxxB
Symbol VIN IDD VUVLO2 VUVLOHYS Item Operating Input Voltage Supply Current UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis VIN=5.0V, VOUT1=0V 2.35 0.05 Conditions Min. 3.0 400 2.50 0.15 Typ. Max. 5.5 800 2.65 0.25
Topt=25C
Unit V A V V
Topt=25C
*
DC/DC Part
Symbol VOUT1 VOUT1/ Topt fosc RLX ILXleak ILXLIM Maxduty tstart Item DC/DC Output Voltage DC/DC Output Voltage Temperature Coefficient Oscillator Frequency Lx on Resistance Lx Leakage Current Lx Current Limit Maximum duty cycle Soft-start Time VIN=5.0V Conditions VIN=5.0V, at no load OPEN LOOP 40C
< =
Min. VOUT1 x0.98
Typ.
Max. VOUT1 x1.02
Unit V ppm /C
Topt
< =
85C 960
100 1200 0.4 0.01 600 100 0.35 1.00 3.00 850 1440 0.8 5.00
VIN=5.0V VIN=5.0V, ILX=100mA VIN=VOUT1=5.5V, VLX=0V VIN=5.0V
kHz A mA % ms
Topt=25C
*
VR Part
Symbol VOUT2 IOUT2 VREG2 VDIF2 ILIM2 VOUT2/ Topt Item VR Output Voltage Maximum Output Current of VR VR Load Regulation Dropout Voltage Short Current Limit VR Output Voltage Temperature Coefficient Conditions VIN=5.0V, IOUT2=10mA VIN=5.0V VIN-VOUT2=0V 1mA < IOUT2 < 80mA = = IOUT2=100mA VOUT2=0V 40C
< =
Min. VOUT2 x0.98 200
Typ.
Max. VOUT2 x1.02 60 0.3
Unit V mA
20 0.2 50
mV V mA ppm /C
Topt=25C
Topt
< =
85C
100
*
VD Part
Symbol -VDET -VDET/ Topt VHYS tPLH IDOUTL Item VD Detector Threshold VD Detector Threshold Temperature Coefficient Hysteresis Range VD Output Delay Time for Release VDOUT "L" Output Current VIN=VDOUT=-VDETx0.9 to 5.0 VIN=2.0V, VDOUT=0.1V 3 2 40C
< =
Conditions
Min. -VDET x0.975
Typ.
Max. -VDET x1.025
Unit V ppm /C V
Topt
< =
85C
100 -VDET x0.05 12 7 30 20
ms mA
6
R5212D
*
R5212DxxxC
Symbol VIN IDD VUVLO2 VUVLOHYS Item Operating Input Voltage Supply Current UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis VIN=5.0V, VOUT1=0V 2.35 0.05 Conditions Min. 3.0 400 2.50 0.15 Typ. Max. 5.5 800 2.65 0.25
Topt=25C
Unit V A V V
Topt=25C
*
DC/DC Part
Symbol VOUT1 VOUT1/ Topt fosc RLX ILXleak ILXLIM Item DC/DC Output Voltage DC/DC Output Voltage Temperature Coefficient Oscillator Frequency Lx on Resistance Lx Leakage Current Lx Current Limit Maximum duty cycle Soft-start Time VIN=5.0V Conditions VIN=5.0V, at no load OPEN LOOP 40C
< =
Min. VOUT1 x0.98
Typ.
Max. VOUT1 x1.02
Unit V ppm /C
Topt
< =
85C 960
100 1200 0.4 0.01 600 100 0.35 1.00 3.00 850 1440 0.8 5.00
VIN=5.0V VIN=5.0V, ILX=100mA VIN=VOUT1=5.5V, VLX=0V VIN=5.0V
kHz A mA % ms
Topt=25C
Maxduty tstart
*
VR Part
Symbol VOUT2 IOUT2 VREG2 VDIF2 ILIM2 VOUT2/ Topt Item VR Output Voltage Conditions VOUT1=3.3V IOUT2=10mA VIN-VOUT2=0V 1mA < IOUT2 < 80mA = = IOUT2=100mA VOUT2=0V 40C
< =
Min. VOUT2 x0.98 200
Typ.
Max. VOUT2 x1.02
Unit V mA
Maximum Output Current of VR VIN=5.0V VR Load Regulation Dropout Voltage Short Current Limit VR Output Voltage Temperature Coefficient
20 0.2 50
60 0.3
mV V mA ppm /C
Topt=25C
Topt
< =
85C
100
*
VD Part
Symbol -VDET -VDET/ Topt VHYS tPLH IDOUTL Item VD Detector Threshold VD Detector Threshold Temperature Coefficient Hysteresis Range VD Output Delay Time for Release VDOUT "L" Output Current VIN=VDOUT=-VDETx0.9 to 5.0 VIN=2.0V, VDOUT=0.1V 3 2 40C
< =
Conditions
Min. -VDET x0.975
Typ.
Max. -VDET x1.025
Unit V ppm /C V
Topt
< =
85C
100 -VDET x0.05 12 7 30 20
ms mA
7
R5212D
*
R5212DxxxD
Symbol VIN IDD VUVLO2 VUVLOHYS Item Operating Input Voltage Supply Current UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis VIN=5.0V, VOUT1=0V 2.35 0.05 Conditions Min. 3.0 400 2.50 0.15 Typ. Max. 5.5 800 2.65 0.25
Topt=25C
Unit V A V V
Topt=25C
*
DC/DC Part
Symbol VOUT1 VOUT1/ Topt fosc RLX ILXleak ILXLIM Maxduty tstart Item DC/DC Output Voltage DC/DC Output Voltage Temperature Coefficient Oscillator Frequency Lx on Resistance Lx Leakage Current Lx Current Limit Maximum duty cycle Soft-start Time VIN=5.0V Conditions VIN=5.0V, at no load OPEN LOOP 40C
< =
Min. VOUT1 x0.98
Typ.
Max. VOUT1 x1.02
Unit V ppm /C
Topt
< =
85C 960
100 1200 0.4 0.01 600 100 0.35 1.00 3.00 850 1440 0.8 5.00
VIN=5.0V VIN=5.0V, ILX=100mA VIN=VOUT1=5.5V, VLX=0V VIN=5.0V
kHz A mA % ms
Topt=25C
*
VR Part
Symbol VOUT2 IOUT2 VREG2 VDIF2 ILIM2 VOUT2/ Topt Item VR Output Voltage Maximum Output Current of VR VR Load Regulation Dropout Voltage Short Current Limit VR Output Voltage Temperature Coefficient Conditions VOUT1=3.3V IOUT2=10mA VIN=5.0V, VOUT1=3.3V VIN-VOUT2=0V 1mA < IOUT2 < 80mA = = IOUT2=100mA VOUT2=0V 40C
< =
Min. VOUT2 x0.98 200
Typ.
Max. VOUT2 x1.02
Unit V mA
20 0.2 50
60 0.3
mV V mA ppm /C
Topt=25C
Topt
< =
85C
100
*
VD Part
Symbol -VDET -VDET/ Topt VHYS tPLH IDOUTL Item VD Detector Threshold VD Detector Threshold Temperature Coefficient Hysteresis Range VD Output Delay Time for Release VDOUT "L" Output Current VIN=VDOUT=-VDETx0.9 to 5.0 VIN=2.0V, VDOUT=0.1V 10 2 40C
< =
Conditions
Min. -VDET x0.975
Typ.
Max. -VDET x1.025
Unit V ppm /C V
Topt
< =
85C
100 -VDET x0.05 50 7 120 20
ms mA
8
R5212D
TYPICAL APPLICATION AND APPLICATION HINTS
R5212Dxxxx
C3 VOUT2 VDOUT R1 VOUT2 VDOUT VOUT1 VIN GND LX L1 D1 C2 VOUT1 C1
Examples of Components Symbol (VOUT1 L1
< =
Item 1.6V) 4.7H 4.7H (VOUT1 > 1.6V) 6.8H 6.8H LQH43C Series VLP5610 Series LQH43C Series VLP5610 Series Murata TDK Murata TDK
D1 R1 C1 C2 C3
RB491D(ROHM) or EP05Q03 (Nihon Inter) 50k 10F Ceramic Capacitor 10F Ceramic Capacitor 2.2F Ceramic Capacitor
9
R5212D
When you use these ICs, consider the following issues; Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to between VIN and GND with the minimum connection. Make sufficient grounding, and reinforce supplying. A large switching current may flow through the connection of power supply, an inductor and the connection of VOUT1. If the impedance of the connection of power supply or ground is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. Use a capacitor with a capacity of 10F or more for VIN and GND, and with low ESR ceramic type. In terms of VOUT1, use a ceramic capacitor with a capacity of 10F or more. For VOUT2 pin, use a ceramic capacitor with a capacitance of 2.2F or around. Choose an inductor that has a small D.C. resistance and large allowable current and which is hard to reach magnetic saturation. If the value of inductance of an inductor is extremely small, the ILX , which flows through Lx transistor and an inductor, may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. If the spike noise of Lx pin is too large, make snub circuit (such as serial connection of CR) between Lx and GND, then the noise will be reduced. The time constant of the CR depends on the actual PCB, so evaluate it on the actual PCB. If the load current of the voltage regulator is small, because of the switching noise of DC/DC converter, the output voltage of VOUT2 may be large. To avoid this, use the voltage regulator with a load current at least 0.5mA. In terms of LDO, the difference between the set output voltage and input voltage should be 0.5V or more, The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
10
R5212D
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:
IL ILmax
i1 Lx Tr SD L i2 CL IOUT

ILxmin
VOUT
topen
VIN
ton t=1/fosc
toff
Step 1 : Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LX Tr. Step 2 : When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.
11
R5212D
*
Discontinuous Conduction Mode and Continuous Conduction Mode
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the same as those when Lx Tr. turns on and when it turns off. The difference between ILmax and ILmin, which is represented by I; I=ILmax-ILmin=VOUTxtopen/L=(VIN-VOUT)xton/L ........................................................Equation 1 Where, t=1/fosc=ton+toff duty (%)=ton/tx100=tonxfoscx100 topen < toff = In Equation A, VOUTxtopen/L and (VIN-VOUT) xton/L are respectively shown the change of the current at ON, and the change of the current at OFF. When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ILmin becomes to zero (ILmin=0). When IOUT is gradually increased, eventually, topen becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc tonc=txVOUT/VIN .............................................................................................................Equation 2 When tonOUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is "ON": (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as RP the direct current of the inductor is described as RL. The threshold level of Shottky diode is described as VF.) VIN=VOUT+(RP+RL)xIOUT+LxIRP/ton ..................................................................................Equation 3 When Lx Tr. is "OFF": LxIRP/toff=VF+VOUT+RLxIOUT ...........................................................................................Equation 4 Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RLxIOUT)/(VIN+VF-RPxIOUT)......................................................................Equation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RPxIOUT-RLxIOUT)xDON/f/L .......................................................................Equation 6 Wherein, peak current that flows through L, Lx Tr., and SD is as follows; ILmax=IOUT+IRP/2 ...........................................................................................................Equation 7 Consider ILmax, condition of input and output and select external components. The above explanation is directed to the calculation in an ideal case in continuous mode.
12
R5212D
Timing Chart
*
R5212DxxxA/B
(-VDET+VHYS) -VDET VUVLO2 VUVLO1 VIN Voltage
Soft-start Time
VOUT1 Voltage
LX Voltage VD Delay for Release VDOUT Voltage VD Delay for Release
VOUT2 Voltage
13
R5212D
*
R5212DxxxC/D
(-VDET+VHYS) -VDET VUVLO2 VUVLO1 VIN Voltage Soft-start Time
VOUT1 Voltage
Lx Voltage VD Delay For Release VDOUT Voltage VD Delay For Release
VOUT2 Voltage
The timing chart which is shown in the previous page describes the relation of supply voltage changes with time and each output of DC/DC converter, voltage detector, and voltage regulator.
(1) DC/DC converter
When the power turns on and in the case of rising the VIN voltage, while the VIN voltage is at UVLO release level (VUVLO2) or less, the operation of the DC/DC converter stops and does not make switching, therefore VOUT1 voltage does not rise. When the VIN voltage becomes UVLO release level or more, the DC/DC converter starts soft-start operation, and start switching, then VOUT1 will rise. After the soft-start time, if VIN voltage becomes set VOUT1 level or more, VOUT1 will be settled at VOUT1 set output voltage. If VIN voltage becomes UVLO detector threshold level (VUVLO1) or less, the DC/DC converter stops switching then Lx transistor in the IC turns off.
(2) Voltage Detector
If the VIN voltage is at VD detector threshold level or less, the N-channel transistor of VDOUT pin turns on and outputs "L" to VDOUT pin. Then, when the VIN voltage becomes VD detector threshold level + its hysteresis range (-VDET +VHYS ) or more, after VD delay for release (tPLH) passing, the N-channel transistor inside the IC turns off, VDOUT pin voltage reaches to the pull-up voltage. Besides, the release circuit for VD starts from when VIN voltage reaches (-VDET +VHYS ).
14
R5212D
(3)Voltage Regulator * R5212DxxxA/B
The voltage regulator always operates even if UVLO function would work. Therefore, VOUT2 voltage is nearly equal to VIN voltage. Actual value depends on the load current. When the VIN voltage becomes set VOUT2 voltage or more, VOUT2 voltage will be the set output voltage. The short current limit can operate after soft-start time.
*
R5212DxxxC/D
VOUT1 voltage is the input voltage for the built-in LDO, when the VOUT1 voltage is equal or less than VOUT2 set voltage, VOUT2 voltage is depending on the load current for VOUT2, however almost same as VOUT1 Voltage. When the VOUT1 voltage is equal or more than set VOUT2 voltage, VOUT2 voltage becomes the set output voltage. Short Current Limit works after soft-start operation.
TEST CIRCUITS
OSCILLOSCOPE
VIN A VOUT1
VIN
LX VOUT1
GND
GND
Supply Current
UVLO Detector Threshold/ Released Voltage
VIN
LX VOUT1 A
VIN
LX VOUT1 V
GND
GND
Lx Leakage Current
Lx On Resistance
OSCILLOSCOPE
OSCILLOSCOPE
VIN LX VOUT1
VIN
LX VOUT1 VOUT2
GND
GND
Lx Current Limit
VOUT1 Output Voltage
15
R5212D
OSCILLOSCOPE OSCILLOSCOPE VOUT1
VIN
LX VOUT1
GND
Oscillator Frequency, Soft-start Time
VIN
LX VOUT1 VOUT2
VIN
LX VOUT1
GND
V
GND
VDOUT
IOUT2
OSCILLOSCOPE
VOUT2 Output Voltage, Load Regulation, Dropout Voltage, Current Limit, Short Current Limit
VIN VOUT1
VDOUT Detector Threshold, Hysteresis Range, VD Output Delay Time for Release
GND VDOUT
A
VDOUT "L" Output Current
16
R5212D
TYPICAL CHARACTERISTICS
1) DC/DC Output Voltage vs. Output Current (Topt=25C)
R5212D011A
DC/DC Output Voltage VOUT1(V)
DC/DC Output Voltage VOUT1(V)
1.63 1.62 1.61 1.60 1.59 1.58 VIN=4.0V VIN=5.0V VIN=5.5V 0 100 200 300 400 Output Current IOUT1(mA) 500 3.36 3.34 3.32 3.30 3.28 3.26 3.24 0 VIN=4.0V VIN=5.0V VIN=5.5V 100 200 300 400 Output Current IOUT1(mA) 500
R5212D014C
2) Efficiency vs. Output Current (Topt=25C)
R5211D011A
90 80 70 60 50 40 30 20 10 0 0.1 VIN=4.0V VIN=5.0V VIN=5.5V 1 10 100 Output Current IOUT1(mA) 1000 VOUT1=1.6V 100 90 80 70 60 50 40 30 20 10 0 0.1
R5211D014C
VOUT1=3.3V
Efficiency (%)
Efficiency (%)
VIN=4.0V VIN=5.0V VIN=5.5V 1 10 100 Output Current IOUT1(mA) 1000
3) VR Output Voltage vs. Output Current (Topt=25C)
R5212D011A
2.65 VIN=5V 3.0
R5212D011A
VIN=5V
VR Output Voltage VOUT2(V)
VR Output Voltage VOUT2(V)
0 50 100 150 Output Current IOUT2(mA) 200
2.63 2.61 2.59 2.57 2.55
2.5 2.0 1.5 1.0 0.5 0 0 100 200 300 400 Output Current IOUT2(mA) 500
17
R5212D
R5212D011A
3.0 VIN=5V
VR Output Voltage VOUT2(V)
2.5 2.0 1.5 1.0 0.5 0 0 -40C 25C 85C 100 200 300 400 Output Current IOUT2(mA) 500
4) DC/DC Output Voltage vs. Temperature
R5212D011A
DC/DC Output Voltage VOUT1(V)
1.70 1.65 1.60 1.55 1.50 -50 VIN=5V OpenLooP
5) VR Output Voltage vs. Temperature
R5212D011A
2.70 VIN=5V IOUT2=10mA
VR Output Voltage VOUT2(V)
0 50 Temperature Topt(C) 100
2.65 2.60 2.55 2.50 -50
0 50 Temperature Topt(C)
100
6) VD Detector Threshold vs. Temperature
R5212D011A
VD Detector Threshold -VDET(V)
4.40 4.35 4.30 4.25 4.20 4.15 4.10 4.05 4.00 -50 0 50 Temperature Topt(C) 100 VIN=5V
7) VD Released Delay Time vs. Temperature
R5212D
50 45 40 35 30 25 20 15 10 5 0 -50
VD Released Delay TimeTPLH(ms)
B/D version
A/C version 0 50 Temperature Topt(C) 100
18
R5212D
8) Soft-start time vs. Temperature
R5212D011A
2.0 VIN=5V 1350
9)Frequency vs. Temperature
R5212D011A
VIN=5V
Soft-start Time tstart(ms)
1.5 1.0 0.5 0.0 -50
Frequency fosc(kHz)
0 50 Temperature Topt(C) 100
1300 1250 1200 1150 1100 1050 -50 0 50 Temperature Topt(C) 100
10) Supply Current vs. Temperature
R5212D011A
400 VIN=5V
11) ON Resistance vs. Temperature
R5212D011A
1.0 VIN=5V
Supply Current IDD(A)
380 360 340 320 300 -50
ON Resistance RLX()
0 50 Temperature Topt(C) 100
0.8 0.6 0.4 0.2 0.0 -50
0 50 Temperature Topt(C)
100
12) UVLO Released Voltage vs. Temperature
R5212D011A
UVLO Released Voltage VUVLO2(V)
2.70
13) Lx Current Limit vs. Temperature
R5212D011A
1000 VIN=5V
LX Current Limit ILXLIM(mA)
0 50 Temperature Topt(C) 100
2.60 2.50 2.40 2.30 -50
900 800 700 600 500 -50
0 50 Temperature Topt(C)
100
19
R5212D
14) Soft-start Output Waveform (Topt=25C)
R5212D011A
DC/DC,VR Output Voltage VOUT1,VOUT2(V)
10 8 6 4 2 0 -0.5 0 0.5 Time (ms) 1 1.5 VIN=5V 6 4 2
VIN
VOUT2
0
VOUT1
2
15) VD Released Delay Waveform (Topt=25C)
R5212D011A
VDOUT Detector Output Voltage VDOUT(V)
Input Voltage VIN(V)
0
15 10
10 5
VIN
5 0
VDOUT
0
-10
-5
0
5
10 Time (ms)
15
20
25
30
16) DC/DC Load Transient Response 1 (Topt=25C)
R5212D011A
DC/DC Output Voltage VOUT1(V)
VOUT1
1.6 1.5 1.4 1.3 1.2 -20 800 600 400 200 1.7 L=4.7H, C1=C2=10F, VIN=5V 1000
IOUT1:10mA200mA
0
20
40 Time (s)
60
80
100
20
DC/DC Output Current IOUT1(mA)
Input Voltage VIN(V)
R5212D
R5212D014C
DC/DC Output Voltage VOUT1(V)
VOUT1
3.3 3.2 3.1 800 600 400
IOUT1:10mA200mA
3.0 2.9 -20 200 0
0
20
40 Time (s)
60
80
100
R5212D011A
DC/DC Output Voltage VOUT1(V) DC/DC Output Current IOUT1(mA)
1.8 1.7 L=4.7H, C1=C2=10F, VIN=5V 1000 800
VOUT1
1.6 1.5 600 400
IOUT1:200mA10mA
1.4 1.3 -100 200 0
0
100 Time (s)
200
300
400
R5212D014C
DC/DC Output Voltage VOUT1(V) DC/DC Output Current IOUT1(mA)
3.5 3.4 L=10H, C1=C2=10F VIN=5V 1000 800
VOUT1
3.3 3.2 3.1 3.0 -100 600 400 200 0
IOUT1:200mA10mA
0 100 200 300 Time (s) 400 600 700
800
DC/DC Output Current IOUT1(mA)
3.4
L=10H, C1=C2=10F, VIN=5V
1000
21
R5212D
17) VR Load Transient Response (Topt=25C)
R5212D011A
2.63 C1=C2=10F, C3=2.2F VIN=5V 900 800 700 600 500 400 300 200
VR Output Voltage VOUT2(V)
2.62 2.61 2.60 2.59 2.58 2.57 2.56 2.55 2.54 -4 -2 0 2 Time (s)
IOUT2:10mA150mA
4 6 8 10
100 0
18) DC/DC, VR Ripple Waveform (C=10F, VIN=5V, IOUT1=280mA, IOUT2=150mA, Topt=25C)
R5212D011A
30 DC/DC 20 10 0 -10 -20 -30 -40 -50 VR -60 -70 -80 -90 -100 -0.5 L=4.7H, VOUT1=1.6V, VOUT2=2.6V 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30
DC/DC Ripple Waveform VOUT1(mV)
0
0.5 Time (s)
1
1.5
2
R5212D014C
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100
L=10H, VOUT1=3.3V, VOUT2=2.5V
DC/DC
VR
0 0.5 Time (s) 1 1.5 2
-0.5
100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50
DC/DC Ripple Waveform VOUT1(mV)
22
VR Ripple Waveform VOUT2(mV)
VR Ripple Waveform VOUT2(mV)
VR Output Current IOUT2(mA)
R5212D
19) DC/DC Output Voltage vs. Input Voltage (Topt=25C)
R5212D011A
1.62 IOUT1=10mA 3.31
R5212D014C
IOUT1=10mA
Output Voltage VOUT1(V)
1.61 1.60 1.59 1.58
Output Voltage VOUT1(V)
3 3.5 4 4.5 5 Input Voltage VIN(V) 5.5
3.30 3.29 3.28 3.27 3.5
4 4.5 5 Input Voltage VIN(V)
5.5
20) VR Output Voltage vs. Input Voltage (Topt=25C)
R5212D011A
2.65 IOUT2=10mA
Output Voltage VOUT2(V)
2.63 2.61 2.59 2.57 2.55
3
3.5
4 4.5 5 Input Voltage VIN(V)
5.5
23
PACKAGE INFORMATION
PE-HSON-6-0510
*
HSON-6
Unit: mm
PACKAGE DIMENSIONS
6 4
2.80.2
3.00.2
(0.15)
(0.2)
2.90.2 0.5TYP
(1.5)
0.150.05
Bottom View
0.9MAX.
0.95 0.30.1
0.1 0.1 M
Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DESCRIPTIONS. Do not connect to other wires or land patterns.
TAPING SPECIFICATION
0.20.1 +0.1 1.5 0 4.00.1 2.00.05
3.50.05
1.10.1
1.750.1
(0.2)
1
3
(1.6)
(0.65)
3.3 2.0MAX. 4.00.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
11.41.0 9.00.3
210.8
+1 60 0 0 180 -1.5
20.5
130.2
8.00.3
3.2
PACKAGE INFORMATION
PE-HSON-6-0510
POWER DISSIPATION (HSON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result
(Topt=25C,Tjmax=125C)
Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm x 40mm x 1.6mm Top side : Approx. 50% , Back side : Approx. 50% 0.5mm x 44pcs
Standard Land Pattern Power Dissipation Thermal Resistance
1200 1100 1000 900 800 700 600 500 400 300 200 100 0 0 25
Free Air 400mW 250C/W
900mW ja=(125-25C)/0.9W=111C/W
Power Dissipation PD(mW)
On Board
40
Free Air
50 75 85 100 Ambient Temperature (C)
125
150
Power Dissipation
40
Measurement Board Pattern IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.35 0.95
1.6
1.7
1.15
0.65
(Unit: mm)
MARK INFORMATION
ME-R5212D-0510
R5212D SERIES MARK SPECIFICATION * HSON-6
1
to ,
6
4
: Product Code (refer to Part Number vs. Product Code) : Lot Number
1 4
2 5
3 6
5
*
Part Number vs. Product Code
Product Code
1 2 3 4
Part Number R5212D011A R5212D014C R5212D017A R5212D016B
D D D D
1 1 1 1
1 4 7 6
A C A B


▲Up To Search▲   

 
Price & Availability of R5212D017A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X